Security in web development

Relatore: Roberto Santini

A brief introduction to OWASP

OWASPTOP 10
@F 4
1.

Ac
-
4 - bk ‘ '

OWASP TOP10/EVERYWHERE

What is OWASP?

OWASP stands for Open Web Application Security Project.

It’s not a development standard, it’'s a nonprofit foundation that works to improve the
security of software.

How it try to reach its goal?

Creating projects for guidelines, tools and methodologies.

the

leRdTalks

Alot of projectst

There are three categories of projects

D

N

Flagship Projects: Flagship designation is given to projects that have
demonstrated strategic value to OWASP and application security as a whole

Lab Projects: Represent projects that have produced an OWASP reviewed
deliverable of value

Incubator Projects: Represent the experimental playground where projects are
still being fleshed out, ideas are still being proven, and development is still
underway

=

S |fiTalks

The Top Ten Project

From the project’'s web page: “Globally recognized by developers as the first step
towards more secure coding.”

It's a document which describes the ten major application security risks.

Every web application SHOULD follows the “Top Ten” guidelines.

The Top Ten Project - the list

SELECT FROM ORDER BY DESC;

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting XSS

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities
10. Insufficient Logging & Monitoring

The Top Ten Project - risk classification

Threat Ex |0ltﬂhl|lty Weakness Weakness Technical Business
Agents P Prevalence | Detectability Impacts Impacts
asy: 3

— Easy: 3 Widespread: 3 E Severe: 3
ppii-
Specific Specific

The Top Ten Project - risk calculation

Threat Attack Security
AQEI“S % [FRERE") \achis 8 | T FERRRELR -q > Weakness lllllllllllllll L] Impacts
Application Exploitability Prevalence Detectability Business
Specific EASY: 3 WIDESPREAD: 3 EASY: 3 M - Specific

———T .

Average

230 |1

the

S 2ias

The Top Ten Project - injection

Threat Attack |_> Security
Pumanm TR RERY |
Agentﬁ% * Vectors | Weakness

Almost any source of data can be an | Injection flaws are very prevalent, particularly in
injection vector, environment legacy code. Injection vulnerabilities are often found
variables, parameters, external and in SQL, LDAP, XPath, or NoSQL queries, OS
internal web services, and all types of | commands, XML parsers, SMTP headers,

users. Injection flaws occur when an | expression languages, and ORM queries.

attacker can send hostile data to an
interpreter.

Detectability: 3

Injection flaws are easy to discover when examining
code. Scanners and fuzzers can help attackers find
injection flaws.

TERREREN] Impacts

Technical: 3 Business ?

Injection can result in data loss,
corruption, or disclosure to
unauthorized parties, loss of
accountability, or denial of access.
Injection can sometimes lead to
complete host takeover.

The business impact depends on the
needs of the application and data.

the

) NeRdTalks

The Top Ten Project - injection

Is the Application Vulnerable?

An application is vulnerable to attack when:

» User-supplied data is not validated, filtered, or sanitized by the
application.

» Dynamic queries or non-parameterized calls without context-
aware escaping are used directly in the interpreter.

* Hostile data is used within object-relational mapping (ORM)
search parameters to extract additional, sensitive records.

* Hostile data is directly used or concatenated, such that the
SQL or command contains both structure and hostile data in
dynamic queries, commands, or stored procedures.

Some of the more commaon injections are SQL, NoSQL, 0OS

command, Object Relational Mapping (ORM), LDAP, and
Expression Language (EL) or Object Graph Navigation Library

(OGNL) injection. The concept is identical among all interpreters.

Source code review is the best method of detecting if
applications are vulnerable to injections, closely followed by
thorough automated testing of all parameters, headers, URL,
cookies, JSON, SOAP, and XML data inputs. Organizations can
include static source (SAST) and dynamic application test
(DAST) tools into the CI/CD pipeline to identify newly introduced
injection flaws prior to production deployment.

How to Prevent

Preventing injection requires keeping data separate from
commands and queries.

* The preferred option is to use a safe AP, which avoids the use
of the interpreter entirely or provides a parameterized interface,
or migrate to use Object Relational Mapping Tools (ORMs).
MNote: Even when parameterized, stored procedures can still
introduce SQL injection if PL/SQL or T-SQL concatenates
queries and data, or executes hostile data with EXECUTE
IMMEDIATE or exec().

Use positive or "whitelist" server-side input validation. This is
not a complete defense as many applications require special
characters, such as text areas or APIs for mobile applications.

For any residual dynamic queries, escape special characters
using the specific escape syntax for that interpreter.

Note: SQL structure such as table names, column names, and
so on cannot be escaped, and thus user-supplied structure
names are dangerous. This is a common issue in report-writing
software.

Use LIMIT and other SQL controls within queries to prevent
mass disclosure of records in case of SQL injection.

the

Y ks

The Top Ten Project - injection

Example Attack Scenarios

Scenario #1: An application uses untrusted data in the
construction of the following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE
custlD="" + request.getParameter("id") + "**;

Scenario #2: Similarly, an application's blind trust in frameworks
may result in queries that are still vulnerable, (e.g. Hibernate
Query Language (HQL)):
Query HQLQuery = session.createQuery("FROM accounis
WHERE custiD="" + request.getParameter("id") + "");

In both cases, the attacker modifies the ‘id' parameter value in
their browser to send: ' or '1'="1. For example:

http:/lexample.com/applaccountView?id=' or '1'="1

This changes the meaning of both queries to return all the
records from the accounts table. More dangerous attacks could
modify or delete data, or even invoke stored procedures.

References
OWASP

= OWASP Proactive Controls: Parameterize Queries

» DWASP ASVS: V5 Input Validation and Encoding

» OWASP Testing Guide: SOL Injection, Command Injection,
ORM injection

* OWASP Cheat Sheet: Injection Prevention

» OWASP Cheat Sheet: SQL Injection Prevention

» OWASP Cheat Sheet: Injection Prevention in Java

« OWASP Cheat Sheet: Query Parameterization

« OWASP Automated Threats to Web Applications — OAT-014

External

» CWE-77: Command Injection

» CWE-89: SOL Injection

*» CWE-564: Hibernate Injection

= CWE-917: Expression Language Injection

» PortSwigger: Server-side template injection

the

) aiTalks

Is it enough to follow the Top Ten Project guidelines?

The answer is... NO!

SOYOU'RE TELLINGIME...

)

L OWASPTOP10 [NOT GOOD
EHu“GH?ngm.--_:]m'urmlm net

It is the minimum wage, to achieve the AgID qualification the road is still long!

S 2ias

Sonar(ube

makeameme

.org

Sonar(Jube - code analysis overview

2 ¥¥ Bugs Reliability
11 & Vulnerabilities Security e
49 @ Security Hotspots O 0.09% Reviewed Security Review e

111d e 2.3k & Code Smells Maintainability 0

O 0.0% - 9.4% 1.1K

Coverage on 69K Lines to cover Unit Tests Duplications on 172K Lines Duplicated Blocks

the

S 2ias

onar(Jube - OWASP Top Ten security report

Categories G Security Vulnerabilities @ Security Hotspots
o @
> @
47 e

I

000

Al - Injection

AZ - Broken Authentication 0

A3 - Sensitive Data Exposure g
A4 - XML External Entities (XXE)

A5 - Broken Access Control 1

AB - Security Misconfiguration 8

AT - Cross-Site Scripting (XS5) 0

A8 - Insecure Deserialization 0

0006
>

A9 - Using Components with Known Vulnerabilities

A10 - Insufficient Logging & Monitoring 0

o
>

Sonar(Jube - SOL injection vulnerability(?)

¥

157 sant.. public function listAlarmClockInstanceAction(Request $request): Response

158 {

159 I Sthis-»>denyAccessUnlessGranted(Permission: :ACCESS_LEVEL_LIST, Action::ALARM_CLOCK_OPERATION);

160

161 §filterExten = $request-=query-=get('exten');

162 A stilterStatus = [f Srequest->query->get('status');

163

164 /** f@var EntityManager ScampaignInstanceStatusEm */

165 ScampaignInstanceStatuseEm = Sthis->getDoctrine()->getManager('call_campaign_status');

166 $qb = FcampaignInstanceStatusEm->getRepository(CampaignInstance::class)->createQueryBuilder('ci');

167 $qb->where('ci.type = :alarmClockType')

168 ->setParameter("alarmClockType", Consts::CALL_CAMPAIGN_TYPE_ALARM_CLOCK);

169 if (null !'== $filterStatus) {

170 B$5tatusList = Bexplnde(’, ', §TilterStatus);

171 if (1 === count($statusList)) {

172 $qb->andwhere('ci.status = :status')

173 ->setParameter('status’, intval(array_shift(®statuslList)), Type::INTEGER);

174 } else {

175 s/ A list of status has been required. Cast to integer the status values.

176 | array_walk(

177 Pstatuslist,

178 static function (&%item, Fkey) {

179 | $item = intval($item);

180 }

181);

182 Sqb->andwhere([$gb->expr()->in('ci.status’, $statuslist));
Change this code to not construct SQL queries directly from user-controlled data. Why is this an issue? lastyear v L182 G
B Vulnerability » @ Blocker » (O Open + Not assigned » 30min effort Comment W cwe, owasp-al, sans-top25-insecure, sgl +

the

IERdTalks

References

* https://owasp.org/
* https://owasp.org/www-project-top-ten/

* https://www.sonarqube.org/features/security/owasp/

That's all guyst

Any gquestions?...

go to https://owasp.org/

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18

