RabbitMQ
Relatore: Andrea Tamburrino

RabbitMQ

An open-source message broker

Outline

* Inter-process communication

* Message broker

* Advanced Message Queuing Protocol
* RabbitMQ

* A use case from Kalliope

Rabbit/VIO

IeRdTalks

Inter-process communication

* Signals

* Pipes

* Shared memory
* Sockets

* Message queues

Inter-process communication

 Assume n processes need a way —
to communicate with each other

* A solution may be to create a TCP (e. T
connection between each pair

* n(n-1)/2 TCP connections in the Worst cas

* Each process has to maintain n-1 TCP
connections in the worst case

* Think if you have to write (and maintain)
the source code for these services

* Does not scale very well

Inter-process communication

* If we have «something» in the middle —
we can reduce communication links to n |)

* A shared filesystem o
* A shared database | _
* Processes should avoid polling for messages
* Efficient message delivery may be crucial

* A message broker is a better solution

lERdTalks

Message broker

* A message broker implements a protocol —
for messages exchange (better if open standard))

« Communication is architecture-independent

. . |
* Provides message routing to one or mare
destination processes

* Implements common communication patterns
such as
- publish/subscribe -
- point to point \ |
- competing consumers -

the

leRdTalks

AMQP

- Advanced Message Queueing Protocol AQMP message broker
* Defines exchanges, queues and bindings

* An exchange is a message routing ag\en\t
that implements some routing logic

* Queues (trivially) are message buffers Queue * -
from which a client can obtain its messages J i

* Bindings are used to «link» queues to exchan
and thus represent the «rules» followed by the
routing logic of the exchange

Exchange'

==l the

R Talks

AMQP

* Echanges can be of different types——
according to their routing logic
mechanisms

* Direct exchange
Message is delivered to queue(s)
that have a binding key exactly Payload

equal to the message routing key -
. B :

MESSAGE

}Routing key: «abcd»
Headers

AMQP

* Echanges can be of different types«—'\’IESSAGE |
according to their routing logic Routing key: «my.key.abcd»
mechanisms Headers

* Topic exchange
Message is delivered to queue(s)
if routing key matches a pattern Payload my.key.*
Indicated in queue’s binding key

* Routing key is required to be a - -
dot-separated list of words =
(e.g. my.routing.key.abcd) =

* Useful for multicast delivery

i': lERdTalks

AMQP

* Echanges can be of different types——'vIESSAGE

according to their routing logic

mechanisms Headers

* Headers exchange
Message is delivered to queue(s)
If one or more values of headers Payload
match the ones indicated in queue
binding .

* Not very different from topic exchange
* Useful for «filtered» delivery

Headerl: «abcd»

HeaderN: true

AMQP

* Echanges can be of different types——'vIESSAGE

according to their routing logic
: Headers
mechanisms

* Fanout exchange
Message is delivered to all queues
bound to the exchange Payload

* Useful for broadcast delivery

leRdTalks

the

RabbitMQ

« RabbitMQ is an open-source message
« Written in Erlang

* Implements AMQP (up to 0.9.x)

« A client only needs one TCP (TLS) con

» Faces scalability and reliability issues
(e.q. single point of failure)

« HA mechinism

« Mirrored queues "
» Clustering RabbltMO_

IeRdTalks

RabbitMQ

* Queues can have different attributes
 Exclusive

The queue is used by only one connection \

(no concurrent consumers) and it is deleted
when connection is closed

 Durable

Will survive a broker restart, including its messages
If marked durable as well (persistent storage)

* Auto-delete
It is automatically removed when its last consumer unsubscribes

* Other «security» attributes
messages TTL, max queue size, max number of messages, drop policies...

=8 ihe

=

S [Talks

RabbitMQ

* Clients are completely decoupled

* A broker is not required to be aware of
communication coupling between clients
(without a broker we would have !
direct connections between clients)

\eRdTalks

the

RabbitMQ

* Clients are completely decoupled —

* A broker is not required to be aware of
communication coupling between clients
(without a broker we would have !
direct connections between clients)

* How can a client be aware of a broken
connection with another client?

* An application-level mechanism is required

the

leRdTalks

RabbitMQ

* |f enabled, publish confirms can be sent —
by RabbitMQ to the publisher |)

* Sent after RabbitMQ has correctly published
the message on a queue (correct messag
transmission by publisher to RabbitMQ™
through socket is not a guarantee)

* E.g. if a queue was declared exclusive or with
auto-delete property, a connection loss may cauge
it to be removed and publishing will fail: Rabblflvl(%
will send a nack to the publisher

RabbitMQ

* Two types of acks consumer-side

* Auto-ack: RabbitMQ considers a queued
message consumed once it has been
correctly sent to a consumer through'
socket connection (i.e. not a real ack) —

* It is very efficient, of course, but it does not
guarantee that consumer has correctly processed

the message

—

the

leRdTalks

RabbitMQ

* Two types of acks consumer-side —

* Explicit consumer ack: once it has correctly
processed the message received through
the socket connection, consumer sends
an explicit ack/nack

* RabbitMQ removes it from the queue or enqueu
It back again (it depends on a specific policy)

« Cumulative acks are also allowed .

the

leRdTalks

RabbitMQ

* In conclusion, a 100% reliable client to client —
transmission must be implemented at |)
application level —

* A solution (not always feasible in terms
of real-time performances) is to make —
both clients consumers and producers

* In case of one-way communication a
consumer will only be an ack/nack producer

* Probably AMQP provides a mechanism for \ |
reliable communication but, as far as | know, _
RabbitMQ does not implement it yet

the

leRdTalks

BRabbitVQ 09 0

Overview Connections Channels Exchanges Queues Admin virtual host: | All :]
Overview
+ Totals

Queued messages (chart: last minute) (7)

250
200 Ready B 0 msg
150
100 Unacked M 12 msg
50| - -
u - ___—— e, r;
09:02:10 09:02:20 09:02:30 09:02:40 09:02:50 09:03:00 Total | M 12 msg
Message rates (chart: last minute) (7)
G005
NWV\ Publish = ™ 230/s
#00/s
200/s |~ Confirm 0.00/s
s Deli W 397
09:02:10 09:02:20 0%:02:30 09:02:40 09:02:50 09:03:00 ver /s

Redeliversd W 0.00/s
Acknowledge W 379/s

Get M 0.00/s =" e

® JeRd Talks

Get (noack) N 0.00/s

References and useful links

* rabbitmg.com
* WWW.amgp.com

* Our Qt Rabbit client:
https://qgitlab.netresults.dev:10443/netresults/prodotti/kalliope
/pbx/fw/daemons/common_classes/-/tree/master/rabbit

IeRdTalks

http://www.amqp.com/
https://gitlab.netresults.dev:10443/netresults/prodotti/kalliope/pbx/fw/daemons/common_classes/-/tree/master/rabbit
https://gitlab.netresults.dev:10443/netresults/prodotti/kalliope/pbx/fw/daemons/common_classes/-/tree/master/rabbit

Thank you for your
attention!

Questions?

	RabbitMQ Relatore: Andrea Tamburrino
	Slide 2
	Outline
	Inter-process communication
	Inter-process communication
	Inter-process communication
	Message broker
	AMQP
	AMQP
	AMQP
	AMQP
	AMQP
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	References and useful links
	Slide 23

