
RabbitMQ
Relatore: Andrea Tamburrino



RabbitMQ
An open-source message broker



Outline

• Inter-process communication
• Message broker
• Advanced Message Queuing Protocol (AMQP)
• RabbitMQ
• A use case from Kalliope



Inter-process communication

• Signals
• Pipes
• Shared memory
• Sockets
• Message queues
• …



Inter-process communication

• Assume n processes need a way
to communicate with each other
• A solution may be to create a TCP (e.g.)

connection between each pair
• n(n-1)/2 TCP connections in the worst case
• Each process has to maintain n-1 TCP

connections in the worst case
• Think if you have to write (and maintain) 

the source code for these services
• Does not scale very well



Inter-process communication

• If we have «something» in the middle
we can reduce communication links to n
• A shared filesystem
• A shared database
• Processes should avoid polling for messages
• Efficient message delivery may be crucial
• A message broker is a better solution



Message broker

• A message broker implements a protocol
for messages exchange (better if open standard)
• Communication is architecture-independent
• Provides message routing to one or more

destination processes
• Implements common communication patterns

such as
- publish/subscribe
- point to point
- competing consumers
- …



AMQP

• Advanced Message Queueing Protocol
• Defines exchanges, queues and bindings
• An exchange is a message routing agent

that implements some routing logic
• Queues (trivially) are message buffers

from which a client can obtain its messages
• Bindings are used to «link» queues to exchanges

and thus represent the «rules» followed by the
routing logic of the exchange

Exchange

Queue

AQMP message broker



AMQP

• Echanges can be of different types,
according to their routing logic
mechanisms
• Direct exchange

Message is delivered to queue(s)
that have a binding key exactly
equal to the message routing key

MESSAGE

Payload

Headers
Routing key: «abcd»

abcd

abcd



AMQP

• Echanges can be of different types,
according to their routing logic
mechanisms
• Topic exchange

Message is delivered to queue(s)
if routing key matches a pattern
indicated in queue’s binding key
• Routing key is required to be a

dot-separated list of words
(e.g. my.routing.key.abcd)
• Useful for multicast delivery

MESSAGE

Payload

Headers
Routing key: «my.key.abcd»

my.key.*

my.#



AMQP

• Echanges can be of different types,
according to their routing logic
mechanisms
• Headers exchange

Message is delivered to queue(s)
if one or more values of headers
match the ones indicated in queue
binding
• Not very different from topic exchange
• Useful for «filtered» delivery

MESSAGE

Payload

Headers
Header1: «abcd»
…
HeaderN: true

any

all



AMQP

• Echanges can be of different types,
according to their routing logic
mechanisms
• Fanout exchange

Message is delivered to all queues
bound to the exchange
• Useful for broadcast delivery

MESSAGE

Payload

Headers



RabbitMQ

• RabbitMQ is an open-source message broker

• Written in Erlang

• Implements AMQP (up to 0.9.x)

• A client only needs one TCP (TLS) connection

• Faces scalability and reliability issues
(e.g. single point of failure)

• HA mechinism

• Mirrored queues

• Clustering



RabbitMQ
• Queues can have different attributes
• Exclusive

The queue is used by only one connection
(no concurrent consumers) and it is deleted
when connection is closed
• Durable

Will survive a broker restart, including its messages
if marked durable as well (persistent storage)
• Auto-delete

It is automatically removed when its last consumer unsubscribes
• Other «security» attributes

messages TTL, max queue size, max number of messages, drop policies…



RabbitMQ

• Clients are completely decoupled
• A broker is not required to be aware of

communication coupling between clients
(without a broker we would have
direct connections between clients)



RabbitMQ

• Clients are completely decoupled
• A broker is not required to be aware of

communication coupling between clients
(without a broker we would have
direct connections between clients)
• How can a client be aware of a broken

connection with another client?
• An application-level mechanism is required



RabbitMQ

• If enabled, publish confirms can be sent
by RabbitMQ to the publisher
• Sent after RabbitMQ has correctly published

the message on a queue (correct message
transmission by publisher to RabbitMQ
through socket is not a guarantee) 
• E.g. if a queue was declared exclusive or with

auto-delete property, a connection loss may cause
it to be removed and publishing will fail: RabbitMQ
will send a nack to the publisher



RabbitMQ

• Two types of acks consumer-side
• Auto-ack: RabbitMQ considers a queued

message consumed once it has been
correctly sent to a consumer through
socket connection (i.e. not a real ack)
• It is very efficient, of course, but it does not

guarantee that consumer has correctly processed
the message



RabbitMQ

• Two types of acks consumer-side
• Explicit consumer ack: once it has correctly

processed the message received through
the socket connection, consumer sends
an explicit ack/nack
• RabbitMQ removes it from the queue or enqueues

it back again (it depends on a specific policy)
• Cumulative acks are also allowed



RabbitMQ

• In conclusion, a 100% reliable client to client
transmission must be implemented at
application level
• A solution (not always feasible in terms

of real-time performances) is to make
both clients consumers and producers
• In case of one-way communication a

consumer will only be an ack/nack producer
• Probably AMQP provides a mechanism for

reliable communication but, as far as I know,
RabbitMQ does not implement it yet



RabbitMQ



References and useful links

• rabbitmq.com
• www.amqp.com
• Our Qt Rabbit client: 

https://gitlab.netresults.dev:10443/netresults/prodotti/kalliope
/pbx/fw/daemons/common_classes/-/tree/master/rabbit

http://www.amqp.com/
https://gitlab.netresults.dev:10443/netresults/prodotti/kalliope/pbx/fw/daemons/common_classes/-/tree/master/rabbit
https://gitlab.netresults.dev:10443/netresults/prodotti/kalliope/pbx/fw/daemons/common_classes/-/tree/master/rabbit


Thank you for your 
attention!

Questions?


	RabbitMQ Relatore: Andrea Tamburrino
	Slide 2
	Outline
	Inter-process communication
	Inter-process communication
	Inter-process communication
	Message broker
	AMQP
	AMQP
	AMQP
	AMQP
	AMQP
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	RabbitMQ
	References and useful links
	Slide 23

