

oom-killer and the linux memory

Relatore: Giuseppe Sucameli

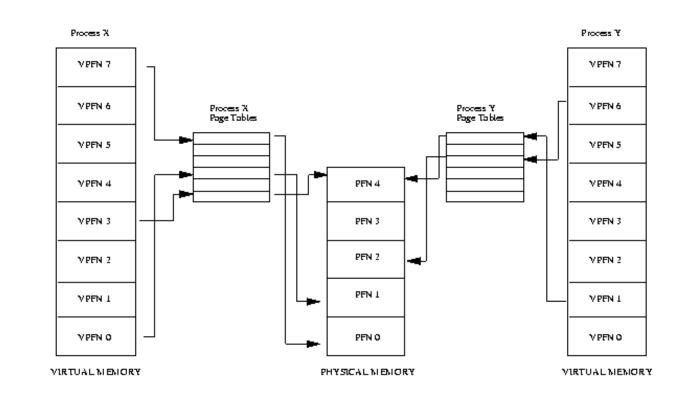
oom-killer

OOM (Out-of-memor) killer is a process the Linux kernel runs when the system has low memory.

oom-killer reviews all running processes and **kills one or more of them** in order to free up system memory and keep the system running.

kernel: [35010811.456576] rasterisk invoked oom-killer: gfp_mask=0x2040d0, order=3, oom_score_adj=0 ... kernel: [35010811.569082] Out of memory: Kill process 9160 (php-fpm) score 5 or sacrifice child kernel: [35010811.569122] Killed process 9160 (php-fpm) total-vm:492392kB, anonrss:257496kB, file-rss:68416kB

Almost all the times the oom-killer is invoked when the available memory is not enough. But it may eventually run even when there's lot of free memory.

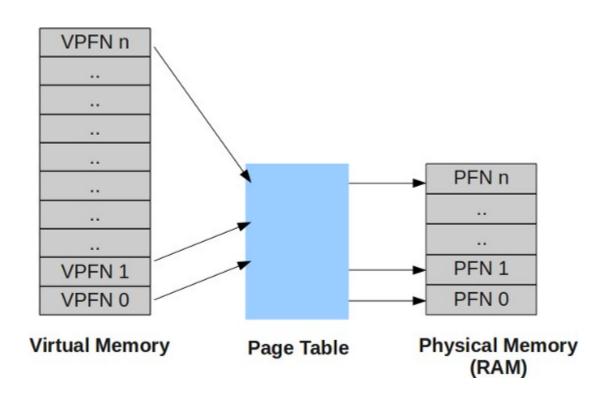


Virtual memory

Virtual memory makes the system appear to have more memory than it actually has.

It provides:

- Large Address Spaces
- Protection
- Memory Mapping
- Fair Physical Memory Allocation
- Shared Virtual Memory



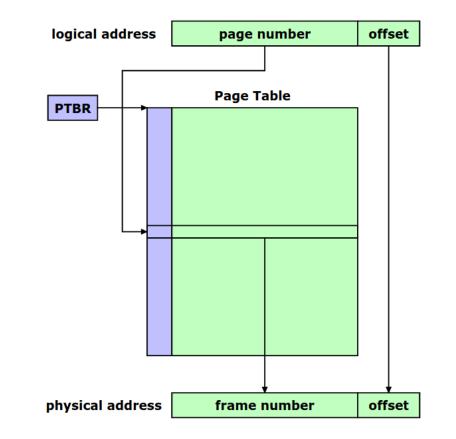
Virtual memory

The virtual memory is divided into fixed length chunks called **pages**.

A page is the basic unit of allocatable memory.

A tipical page size is **4KB**.

Translation between virtual and physical pages is done by using a **page table**.


Important to note that the page table always resides in physical memory.

Virtual memory address

A **virtual address** can be divided into two parts:

- an **offset**, the lowest N bits of the virtual address
- a virtual page frame number (**VPFN**), the rest of the address bits.

Physical memory

	giuseppe(giuseppe-K55	/D:~\$ free -											
		total	used	free	shared	buffers	cache	available						
	Mem:	8050636	6233872	538748	160908	40488	1237528	1381856						
	Swap:	8271868	1921860	6350008										
free	giuseppe(giuseppe@giuseppe-K55VD:~\$ free -w -l												
		total	used	free	shared	buffers	cache	available						
	Mem:	8050636	6233680	538856	160920	40496	1237604	1382036						
	Low:	8050636	7511780	538856										
	High:	θ	θ	0										
	Swap:	8271868	1921860	6350008										

- total: total installed memory
- **used**: used memory (calculated as total free buffers cache)
- free: unused memory
- **shared**: memory used (mostly) by tmpfs
- buffers: memory used by kernel buffers
- **cache**: memory used by the page cache and slabs
- **available**: estimation of how much memory is available for starting new applications, without swapping.

Physical memory zones

Non-Uniform Memory Access (**NUMA**): memory may be arranged into banks having different cost to access depending on the "distance" from the processor.

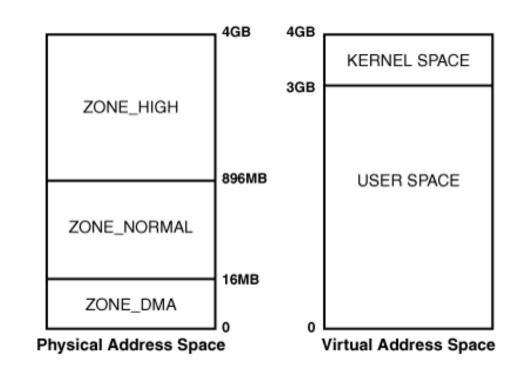
Each bank is called **node**.

Each node is divided up into a number of blocks called **zones** which represent ranges within memory.

Each zone type suitable a different type of usage

- **ZONE_DMA** (<16MB):

the zone used for Direct Memory Access (DMA).


- ZONE_NORMAL (16MB to 896MB):

also called low, memory normally addressable region

- **ZONE_HIGH** (>896MB):

space that the kernel can access only after mapping resident pages to regions in ZONE_NORMAL

It is important to note that many kernel operations can only take place using ZONE_NORMAL

cat /proc/pagetypeinfo

Page	block order	: 10													
	s per block:														
Ecoo			ata tu	ne at order	θ	1	2	3	4	5	6	7	8	9	10
	pages count					1		2		2		6			
Node			type	Unmovable	12	14	8	(4	1	4	Θ	Θ	Θ	Θ
Node	0, zone	DMA,	type	Reclaimable	1	3	3	1	Θ	1	Θ	Θ	Θ	Θ	Θ
Node	θ, zone	DMA,	type	Movable	4	2	1	1	Θ	5	1	Θ	Θ	Θ	Θ
Node	θ, zone	DMA,	type	Reserve	Θ	Θ	Θ	Θ	Θ	Θ	θ	Θ	Θ	Θ	1
Node	θ, zone	Normal,	type	Unmovable	145	301	125	56	42	19	4	7	Θ	Θ	Θ
Node	θ, zone	Normal,	type	Reclaimable	1569	375	131	67	29	14	4	Θ	1	Θ	Θ
Node	θ, zone	Normal,	type	Movable	914	838	229	36	5	4	Θ	Θ	Θ	Θ	Θ
Node	θ, zone	Normal,	type	Reserve	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1
Node		HighMem,	type	Unmovable	1	8	19	12	5	4	2	2	Θ	Θ	Θ
Node	θ, zone	HighMem,	type	Reclaimable	Θ	θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
Node	θ, zone	HighMem,	type	Movable	1626	2523	1298	799	270	46	6	4	Θ	Θ	Θ
Node	θ, zone	HighMem,	type	Reserve	18	13	11	6	8	4	1	1	1	Θ	Θ
Numb	er of blocks	; type	Unmov	able Reclaim	able	Movat	ole	Reserv	/e						
Node	θ, zone	DMA		1	Θ		2	1							
Node	0, zone	lormal		18	20	17	79	1							
Node	0, zone Hi	.ghMem		1	Θ	28	31	1							

- **ZONE_DMA** (<16MB):

the zone used for DMA, kept for historical reason

- **ZONE_DMA32** (16MB to 4GB):

used for DMA, it exists because of the transition to 64Bit (some class of harware that can only do DMA to the low 4GB of memory).

- **ZONE_NORMAL** (>4GB):

the remaining memory.

Note: a 2 GB machine running a 64-bit kernel will have no Normal memory at all while a 4 GB machine will have only a tiny amount of it.

cat /proc/pagetypeinfo

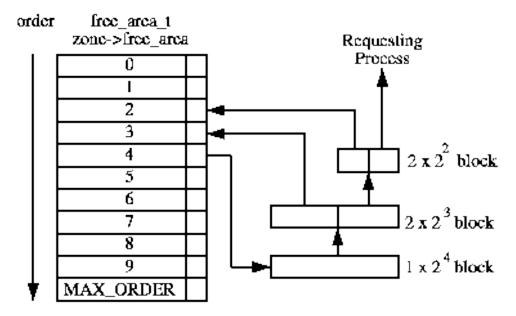
	block orde per block														
Free	pages coun	t per migra	ate ty	pe at order	Θ	1	2	3	4	5	6	7	8	9	10
Node	θ, zone	DMA,	type	Unmovable	1	θ	0	Θ	2	1	1	Θ	1	Θ	Θ
Node	θ, zone	DMA,	type	Movable	Θ	θ	0	Θ	Θ	θ	Θ	Θ	Θ	1	3
Node	θ, zone	DMA,	type	Reclaimable	Θ	θ	0	Θ	θ	θ	Θ	θ	Θ	Θ	Θ
Node	θ, zone		type	HighAtomic	Θ	θ	e	0	Θ	θ	Θ	θ	Θ	Θ	Θ
Node	0, zone		type	CMA	Θ	θ	0	0	Θ	Θ	Θ	Θ	Θ	Θ	Θ
Node	0, zone		type	Isolate	Θ	Θ	0		Θ	Θ	Θ	Θ	Θ	Θ	Θ
Node	θ, zone				548	906	376		61	20	6	Θ	1	Θ	Θ
Node	θ, zone			Movable	26266	20339	2975		279	34	8	4	Θ	Θ	Θ
Node	0, zone			Reclaimable	565	367	247	193	81	35	12	5	Θ	Θ	Θ
Node	θ, zone			HighAtomic	Θ	θ	0	0	Θ	Θ	Θ	Θ	Θ	Θ	Θ
Node	0, zone			CMA	Θ	θ	0		Θ	θ	Θ	Θ	Θ	Θ	Θ
Node	θ, zone			Isolate	Θ	Θ	0		Θ	θ	Θ	Θ	Θ	Θ	Θ
Node	θ, zone				113	58	105		31	2	Θ	θ	Θ	Θ	Θ
Node	θ, zone			Movable	958	1212	617		44	12	Θ	θ	Θ	Θ	Θ
Node	θ, zone			Reclaimable	429	373	2		θ	1	Θ	θ	Θ	Θ	Θ
Node	θ, zone			HighAtomic	17	15	14		1	θ	Θ	θ	Θ	Θ	Θ
Node	θ, zone			CMA	Θ	θ	0		θ	θ	Θ	θ	θ	Θ	Θ
Node	θ, zone	Normal,	type	Isolate	θ	θ	Θ	Θ	θ	θ	θ	θ	θ	θ	θ
Numbe	er of block		Unmov	vable Mov	able R	eclaima	ble	HighAtom	ic	CMA	Is	solate			
Node	θ, zone	DMA		1	7		Θ		θ	θ		θ			
	θ, zone	DMA32			.594		23		θ	θ		Θ			
Node	θ, zone	Normal		208 2	181		35		1	Θ		Θ			

Memory allocation

Let's consider the tipical linux 4KB page size.

A process can ask to allocate a block of memory consisting of one or more consecutive pages.

The block size is identified by its **order**:


...

...

order=0 means 2^0 consecutive pages = 1 page => 4KB
order=1 means 2^1 consecutive pages = 2 pages => 8KB

order=3 means 2^3 consecutive pages = 8 pages => 32KB

If a process asks for an order 3 block and there are no free blocks of that order, the allocator may split a higher-order block (e.g. order 4).

oom-killer

Almost all the times the oom-killer is invoked when the available memory is not enough.

But it may eventually run even when there's lot of free memory.

kernel: [35010811.456576] rasterisk invoked oom-killer: gfp_mask=0x2040d0, order=3, oom_score_adj=0 ... kernel: [35010811.466169] Node 0 DMA free:1904kB min:100kB low:124kB high:148kB ... kernel: [35010811.466348] Node 0 Normal free:126120kB min:2348kB low:2932kB high:3520kB ... kernel: [35010811.466540] Node 0 HighMem free:57282368kB min:512kB low:104364kB high:208220kB ...

In the previous figure the oom-killer has been invoked for a **order=3** block allocation which means the process has requested 32KB of consecutive memory.

As you can see, there is enough memory in Normal zone, so it may be probably due to **memory fragmentation**, i.e. there are no free blocks for the requested order.

Links

https://www.kernel.org/doc/gorman/html/understand/understand005.html

https://tldp.org/LDP/tlk/mm/memory.html

https://www.thegeekstuff.com/2012/02/linux-memory-management/

https://utcc.utoronto.ca/~cks/space/blog/linux/KernelMemoryZones

https://www.kernel.org/doc/gorman/html/understand/understand016.html

https://utcc.utoronto.ca/~cks/space/blog/linux/DecodingPageAllocFailures

oom-killer and linux memory

That's all folks!

Questions?