
Francesco Lamonica

Kalliope CTI Mobile
Architecture & Technical solutions

Architecture
KCTI Common architecture

Architecture
Differences with desktop

• Mobile OSes have their own quirks

• battery saving

• connection roaming

• notifications to wake up apps

• Lack of Qt Signals / Slots (architectural choice to go native)

Architecture
Mobile

No (Qt) Signal

Lack of Signal & Slots
Going native (or non-Qt)

• Synchronous vs Event-driven flow-control

• Qt Signals

• Every Qt Application has an “event loop” thread that dispatches signals to
their connected slots

• Calling an async method is as simple as:

• Defining the connection between an event and what to do when event
occurs: “connect(srcobj, eventname, destobj, func2)”

• Triggering the event in the “srcobj”: “emit eventname”

Lack of Signal & Slots
Going native (or non-Qt)

• function callbacks (not present in every language)

• Old-style IPC

• Localhost server listening in our Qt libs / objects

• Symmetric-key encryption (optional)

• Synchronous API to get the listening port

• Native language socket reading code (eventually wrapped in native
language high-level async structures: i.e. Specific Java Listeners)

Lack of Signal & Slots
Going native (or non-Qt)

• Are we losing something else?

• No Application -> No QEventLoop

• Our Qt-libs will not function properly in native apps!!!

• How we deal with a missing QEventLoop?

• We try to detect missing QtApplication and create one accordingly

• What if there are more than one library?

• Beware of ephemeral params (read the docs / chagelogs!)

Lack of Signal & Slots
Going native (or non-Qt)

Questions?

Native wrapping

Native wrapping
Android: Java / JNI

• Java Native Interface

• java -> C / C++ / asm and vice versa

• Adjust native code to be called

• Write Java code to call the native one

JNI
Java side

• Write a package / class that handles the native code calling

• loadLibrary(“vdk”); //automatically chooses the right prefix and suffix
(libvdk.so / libvdk.dylib / vdk.dll)

• define the “native” methods to be called

• they will be called by this package / class

• they will be searched in the native libraries loaded

JNI
hello world (java side)

package it.netresults.test;

public class HelloWorldJNI {

 static {
 System.loadLibrary(“helloworld"); //libhelloworld.so
 }

 public static void main(String[] args) {
 new HelloWorldJNI().hello();
 }

 private native void hello(); //this will be called in c space
}

JNI
C++ side

• We need to link some specific code to our c++ code

• Basically we need C-style prototype functions to be called

• include jni.h (that provides functions and types to map the 2 worlds)

JNI
hello world (c++ side)

JNIEXPORT void JNICALL Java_it_netresults_test_HelloWorldJNI_hello(JNIEnv*, jobject);

Header file

Implementation file

JNIEXPORT void JNICALL Java_it_netresults_test_HelloWorldJNI_hello(JNIEnv*, jobject)
{
std::cout << "Hello world C++" << std::endl;

}

JNI
welcome to the real world

• Problems of helloworld

• hello() didn’t have parameters

• return type was void

• code called was more C than C++ (no objects and more importantly there
was no internal state to be kept.)

JNI
parameters

• POD parameters are mostly mapped 1-1 (see oracle documentation)

• int -> jint

• bool -> jboolean

• long -> jlong

• Other types (i.e. strings need more “manipulation”)

JNI
Dealing with state and c++ objects

• What shall we do to create and keep around complex objects and their states
(including socket connections, db, etc.)

• Create the object and pass the pointer to be kept in Java class as a simple
memory address (number)

• And when we need to call a method on the complex object wrap it passing
back the pointer from Java to Native

JNI
Dealing with state and c++ objects

JNI
VDK real example

• VDKJEngine.h / VDKJEngine.cpp (compiled in VDK library)

• contain all the wrapped VDK methods

• dynamically generated (wrappergen script)

• VDKJavaEngine.java (class used in Android)

Questions?

