
Relatore: Giuseppe Sucameli

git rebase vs. git merge

Relatore: Giuseppe Sucameli

git rebase vs. git merge

NOT SONOT SO

Relatore: Giuseppe Sucameli

git rebase vs. git merge

We are open to
all NR git users!

NOT SONOT SO

git rebase vs. git merge (link)

https://lmgtfy.com/?q=git+rebase+vs+merge

THE END

git rebase vs. git merge (link)

https://lmgtfy.com/?q=git+rebase+vs+merge

Now you also know what to do
for any other questions…

THE END

git rebase vs. git merge (link)

https://lmgtfy.com/?q=git+rebase+vs+merge

Now you also know what to do
for any other questions…

THE END

git rebase vs. git merge (link)

lmgtfy!

https://lmgtfy.com/?q=git+rebase+vs+merge

THE END?

THE END?

Not really :)

git rebase vs. git merge

master

Both commands are designed to integrate changes
from one branch into another branch...

git rebase vs. git merge

Both commands are designed to integrate changes
from one branch into another branch...

... but they do it in very different ways.

master

git rebase vs. git merge

After you create a feature branch
from master...

master

git rebase vs. git merge

feature

After you create a feature branch
from master...

master

git checkout -b feature master

git rebase vs. git merge

feature

After you create a feature branch
from master...

master

git add <files>...
git commit -m "..."

... and you work on it

git rebase vs. git merge

feature

After you creates a feature branch
from master...

master

... and you work on it

vi <file>
git commit -a

adding few commits...

git rebase vs. git merge

master

feature

After you creates a feature branch
from master...

 ... someone else updates
master branch with new commits.

... and you work on it

adding few commits...

git rebase vs. git merge

master

feature

Now, let’s consider that you need new changes
in master (upstream changes) to continue your work.

git rebase vs. git merge

That’s one of those moments
you have to choose how to proceed.

Now, let’s consider that you need new changes
in master (upstream changes) to continue your work.

master

feature

git merge

Merge is the easiest way to reintregrate changes
from master branch into your feature branch.

master

feature

git merge

master

feature

= merge commit

git checkout feature
git merge master

Merge is the easiest way to reintregrate changes
from master branch into your feature branch.

git merge

master

feature

This creates a new merge commit
in the feature branch

= merge commit

git checkout feature
git merge master

Merge is the easiest way to reintregrate changes
from master branch into your feature branch.

git merge

master

feature

This creates a new merge commit
in the feature branch

= merge commit

 The merge commit keeps trace of the
history of both master and feature branches

git checkout feature
git merge master

Merge is the easiest way to reintregrate changes
from master branch into your feature branch.

git merge

master

feature

+ Merge operation is safe, i.e. non-destructive.

git merge

master

feature A merge operation can be easily
undone...

+ Merge operation is safe, i.e. non-destructive.

master

feature A merge operation can be easily
undone...

git checkout feature
git reset --hard HEAD^

... the same way of undoing
any other commit.

+ Merge operation is safe, i.e. non-destructive.

git merge

feature

– If you need to incorporate upstream changes often,
your branch history can easily become quite unreadable.

git merge

master

master

feature

– If you need to incorporate upstream changes often,
your branch history can easily become quite unreadable.

This makes hard for other developers
to follow the project history.

git merge

git merge

git rebase

Rebase is another way to reintregrate changes
from master branch into your feature branch.

master

feature

git rebase

master

feature

feature

= brand new commit

This "moves" feature branch to start
on tip of master branch

git checkout feature
git rebase master

Rebase is another way to reintregrate changes
from master branch into your feature branch.

git rebase

= brand new commit

This "moves" feature branch to start
on tip of master branch

git checkout feature
git rebase master

Rebase re-writes the history
by creating brand new commits.master

feature

feature

Rebase is another way to reintregrate changes
from master branch into your feature branch.

git rebase

master

feature

+ Rebase keeps the project history clean

git rebase

Resulting project history is linear,
with no forks (merge commit).

master

feature

+ Rebase keeps the project history clean

git rebase

Resulting project history is linear,
with no forks (merge commit).

This makes easier to navigate
history for everyone, even using
tools like git log.

master

feature

+ Rebase keeps the project history clean

git rebase

master

feature

– Re-writing project history can be really catastrofic...

git rebase

... when you’re collaborating with
other members on the same branch!

master

feature

– Re-writing project history can be really catastrofic...

git rebase

Since rebase changes the project
history, once a branch is rebased
you may need to force push it to
the remote repo.

master

feature

WARNING: force push may cause lost of commits of the
remote branch because it replaces the full branch history.

... when you’re collaborating with
other members on the same branch!

– Re-writing project history can be really catastrofic...

git rebase

... when you’re collaborating with
other members on the same branch.

master

feature

– Re-writing project history can be really catastrofic...

WARNING: force push may cause lost of commits of the
remote branch because it replaces the full branch history.

Since rebase changes the project
history, once a branch is rebased
you may need to force push it to
the remote repo.

git rebase

– Rebase cannot be undone...

master

feature

git rebase

... unless you create a new branch
before starting rebase operation.

feature-pre-rebase

– Rebase cannot be undone...

master

feature

git checkout feature
git branch feature-pre-rebase

git rebase

... unless you create a new branch
before starting rebase operation.

feature-pre-rebase

– Rebase cannot be undone...

master

git rebase master

master

feature

After rebase,
the feature-pre-rebase branch
is still referencing the original
branch.

● the same files content
● with completely different history

git rebase vs. git merge

c

cd cde

ac abc

abcdec

cd cde

ac abc

c abcdac

abc abcde

merge

rebase

merge and rebase operations result in:

git rebase vs. git merge

Rebasing branches shared with other developers may cause
lost of commits as well as inconsistent repositories.

Rebase makes sense on individual branches.

If you do so, you’ll probably hear your colleagues in the other room
invoking your name together with lots of saints.

Rebase allows you to completely rewrite commit history.

Using interactive rebase you can easily squash,
drop, edit, add and reorder commits on your branch.

git rebase vs. git merge

Merge is safe.

Merge can be undone even if you forget to create a branch before it.

Use merge if you don’t know if someone else is working on the
same branch.

Merge preserves history.

Using merge you can always see the history completely
same as it happened.

git rebase vs. git merge (examples)

1. You are working on your local repo that is a clone of your
remote repo (origin). Your origin is a fork of the upstream repo.

git clone <my_remote_repo>
git remote add upstream <upstream_repo>

Now, you want to start to work on a new feature.
Shared feature branch on upstream repo is not required for that feature.

git fetch upstream master
git checkout -b new_feature upstream/master

After few commits you need to reintegrate changes from upstream master

After a couple of new commits, you push your work to your origin...

git push origin HEAD

git fetch upstream master
git rebase upstream master

...and then you create a new merge request.

git rebase vs. git merge (examples)

Unfortunately there are merge conflict.
To solve them you can rebase your branch.

Solve conflicts, then push again...

git push origin HEAD

git checkout new_feature
git fetch upstream master
git rebase upstream master

… and your push is rejected!

git checkout new_feature
git pull --rebase upstream masterOR

git rebase vs. git merge (examples)

As you changes the history, you must force push changes to your origin.

Now merge request can be merged.

git push -f origin HEAD

git checkout new_feature
git fetch upstream master
git merge upstream master

You can also merge from upstream master instead of rebase.

git checkout new_feature
git pull upstream masterOR

git rebase vs. git merge (examples)

2. Now, consider you need to work on a new feature having a
shared feature branch on upstream repo.

git fetch upstream shared_feature
git checkout -b shared_feature upstream/shared_feature

After a couple of new commits, you push your work to your the
shared branch on the upstream repo...

git push upstream HEAD

git rebase vs. git merge (examples)

Unfortunately your push is rejected!
Another member pushed changes that conflict with yours.

To solve the conflict you can rebase you local changes from upstream
shared branch and push result to upstream repo.

git checkout shared_feature
git fetch upstream shared_feature
git rebase upstream shared_feature
git push upstream shared_feature

WARNING: never force push to shared branches!
If your push is rejected again, just rebase it and retry.

git rebase vs. git merge (examples)

Questions?

That’s all folks!

git rebase vs. git merge

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

