git rebase vs. git merge

Relatore: Giuseppe Sucameli

git rebase vs. git merge

Relatore: Giuseppe Sucameli

We are open to
all NR git users!

git rebase vs. git merge

Relatore: Giuseppe Sucameli

ait rebase vs. git merge ink

https://lmgtfy.com/?q=git+rebase+vs+merge

ait rebase vs. git merge qink

THE END

https://lmgtfy.com/?q=git+rebase+vs+merge

ait rebase vs. git merge qink

THE END

Now you also know what to do
for any other questions...

https://lmgtfy.com/?q=git+rebase+vs+merge

ait rebase vs. git merge qink

THE END

Now you also know what to do
for any other questions...

Imgtfy!

https://lmgtfy.com/?q=git+rebase+vs+merge

THE END?

THE END?

Not really :)

git rebase vs. git merge

Both commands are designed to integrate changes
from one branch into another branch...

master

= K

IeRd Talks

git rebase vs. git merge

Both commands are designed to integrate changes
from one branch into another branch...

... but they do It in very different ways.

O—0

master

= K

IeRd Talks

git rebase vs. git merge

After you create a feature branch
from master...

O—0

master

the

leRdTalks

git rebase vs. git merge

After you create a feature branch
from master...

feature

O—0

master

git checkout -b feature master

= K

%fmmmm

git rebase vs. git merge

After you create a feature branch
from master...

feature

® ... and you work on it

master

git add <filess>...

git commit -m ... S

%fmmmm

git rebase vs. git merge

After you creates a feature branch
from master...

feature

... and you work on it
Q_OIO_O adding few commits...
master

vi <file>
git commit -a S

Qfmmmm

git rebase vs. git merge

After you creates a feature branch
from master...

feature :
... and you work on it
/ adding few commits...
O—O O

master

... Someone else updates
master branch with new commits.

= K

IeRd Talks

git rebase vs. git merge

Now, let’s consider that you need new changes
In master (upstream changes) to continue your work.

feature

O—0O0———0

master

the

leRdTalks

git rebase vs. git merge

Now, let’'s consider that you need new changes
In master (upstream changes) to continue your work.

feature

O—O) O That's one of those moments

master you have to choose how to proceed.

= K

IeRd Talks

git merge

Merge is the easiest way to reintregrate changes
from master branch into your feature branch.

feature

O—(0O——0-—0

master

IeRd Talks

git merge

Merge is the easiest way to reintregrate changes

: = merge commit
from master branch into your feature branch. ® |

feature

__{:)
O0—0—~4—0-0—"

master

git checkout feature
gilt merge master

IeRd Talks

git merge

Merge is the easiest way to reintregrate changes

: = merge commit
from master branch into your feature branch. ® |

feature

I_O_Q_Q_@ This creates a new merge commit
In the feature branch
o—o0-<4-o0-o0—

master

git checkout feature
gilt merge master

=

S i

git merge

Merge is the easiest way to reintregrate changes

: = merge commit
from master branch into your feature branch. ® |

feature

I_O_O_Q_@ This creates a new merge commit
In the feature branch
o—o0-<4-o0-o0—

master The merge commit keeps trace of the
history of both master and feature branches

git checkout feature
git merge master =1

=

S JATalkS

git merge

+ Merge operation is safe, i.e. non-destructive.

master

IeRdTalks

git merge

+ Merge operation is safe, i.e. non-destructive.

feature A merge operation can be easily

_@ undone...
O0—0—~4—0-0—"

master

the

leRdTalks

git merge

+ Merge operation is safe, i.e. non-destructive.

feature A merge operation can be easily

I_O_Q_Q undone...
O—O O—CO ... the same way of undoing

any other commit.

master

git checkout feature
git reset --hard HEAD”

%%mmmm

git merge

— If you need to incorporate upstream changes often,
your branch history can easily become quite unreadable.

master

IeRdTalks

git merge

— If you need to incorporate upstream changes often,
your branch history can easily become quite unreadable.

master

This makes hard for other developers
to follow the project history.

the

leRdTalks

git merge

fres—— B L. U WAL AU AU mAMUS L EERAE LuMLIMA Umsw) X) . .
| Bneroe branch ‘7275 ajabbard wrap pam urthentication to_wdd_fai . . Merge branch 'feature/BaseF5-22/add-action-for-alarm-clock-configuration' into °4
nnerqr: branch '7475/ejabberd wrap pam authentication to awvoid fai . . Merge branch 'feature/BaseF5-48/extend-campaign_instances-table-with-type-service

nnergn branch 'feature/gui-Kalliope. 38Bsalarm-clock’ into "master

m-i | Herl;r: remote- tracking branch Cupstreamyfeature/gui-Kalliope. 3887 1T

.Merge branch 'feature/BaseF5-21/extend-call-campaign-service-with-type-service’ i

Bl veroe branch faxspart.a.7.17-to.msters dnta -master . Merge branch 'BaseF5-28/Add missed_alarm_event_to_configurationdb' into 'featurey

i

o BaseF5-28/Add missed alarm event te configurationdb

L
b

.Herge branch 'cherry-pick-248808868' into 'feature/fw_basefs-Kalliope-38B/falarm-cl

¥i Merge resote.tracking branch ‘upstream/release/4.7.x° ints fizfp
nnerqr: branch 'reworking/KGUT 45/ remove - Link - to-kal lioe -web-site-

B 5ui: remave the Link to KallicpeFEX in login page

1 J1 nne-rgn branch 'fix/KGUI-47/fix-broken.SmsService” into 'masters . Merge branch 'BaseFS-32/Add ewvent type to configurationdb for kcallscheduler® int
1 B oui: fox wrong paraseter . Merge branch 'BaseFS-32/Add_swvent_type to_configurationdb_for kcallscheduler® int
. nnergr: branch 'feature/KGUI.36/fix-wrong-translation.istaza’ into
4k BaseF5-532/8dd_event type to configurationdb for_kcallscheduler
ngu1: fix wrong translations B - - - - -
| i — = nnergn branch 'feature/KGUI- 16/ remcve old- sendBusylnavallablesHs - L] H fw_basefs: add check on channel type
1 Bl gus: remous ola sengsusyunavas tablesns &p1 H fw_basefs: add delete grant to call_campaign_status_write_role role
T B qui: asd sendwisas FOST API
[ruiaaaron s o0 Bl 1eroe branch feature/KGuL.26/a0d.delete. REST_APL. for.active.ala [faid.7.17-rc8 (2 .He rge branch 'bug/BaseF5-47/Add_cronjob_to_trumcate war_mail files' into 'release
1 Bl #erge branch *feature/KoUI-25/add delete action. far -active-alars . Merge branch 'fix/BaseFs-d8/Reduce_timeout_for_repeat_request’ into 'feature/fw_E
H nnerl;r: branch ' feature/KGUI-43/modify - new-alarm-clock-instance-P0 T g ~
aiik fix/BaseFs-4B/Reduce timeout for repeat request
: n Merge branch 'feature/KGUI-42/add-alarm-clock: last-GET-#PL° imto e
a B #erge brancn ' feature/KGUL-21/new- terminated.alam- clock - tnstanc |-), Feature/BaseF5-23/handle_campaign_type_alarmclock
i B #erge branch feature/KGUI-4B/alam-clock-list-panel-must. show-o h | | bug/BaseFs-47/Add_cronjob_to_truncate var mail files
i n Merge branch 'feature/KGUI.23/new.alarm.clock. instance. panel' in R
- nnerl;r: branch 'feature/KGUI-24/new-alarn-clock: instance - post - APT" 1 H f‘—bESEFS: add check on 5IP account pre'flx
. B #erge branch *feature/KGUL-28/add-alarn-clock: instances -List-pan AR . Merge branch 'fix/BaseF5-45/fix-kcallscheduler-init-script’ into 'feature/fw _base
: acd DELETE AFI for al lock inst r - . X I .
Bl 2 ar tarm closk dnstance * fiwed the service name from amiproxy to callscheduler im init.d script
B gui: asd delete action in alarm clock panel List -
Bl gui: modify new alarm clock instance REST API i H fw basefs: add alarm clock operation action migratiom
B gui: acd REST 4RI for alars clock List l H fw_basefs: change unigue index on call campaign entity
B gui: acd terminated zlarm clock instance pamel)
. Merge branch 'revert-faedfded' into 'feature/fw basefs-CARAB-1'
nghl: acd parameters to filter function for termunated and not te -
B gui: asd tests for new alars clock instance panel .Revert "Merge branch 'TEMP_add_kcallscheduler_binary_to_fw' into 'feature/fw_base
Bl gui: add panel to start new alarm clock instance " Merge branch 'feature/fw_basefs-CARAB-1' of https://gitlab.netresults.intranet: 1€
ngu1: add trait to check alarm clock license l
B 5ui: acd tests far new alars clock instance REST APL feat/BaseF5-44/Add_kcallscheduler _binary to_the firmware
B gui: acd REST AF1 to start new alam clock instance . Merge branch 'feature/basefs-11/kcallscheduler-under-safe’ into 'feature/fw based
ul: acd translations . . =
B H fw basefs: add migrationm for the new action
B gui: asd alare clock instance list panel
B gui: acd alarm clock eperation action B H fw_basefs: add type column im campaign_instances table h
- .Herl;r: branch 'feature/KGUI-35/modify-unique-contraint- for-call-c L___-——- H fw_basefs: add data initialization gor g'l.oba'l 5ettings T B
— .Herl;n branch 'feature/KGUI-19/add-alarm-clock-edit-panel” into * l . ~ ~
— o . R . I va_basefs: add type column im call_campaign_settings_table a B a S

git rebase

Rebase Is another way to reintregrate changes
from master branch into your feature branch.

feature

O—(0O——0-—0

master

IeRd Talks

git rebase

Rebase Is another way to reintregrate changes

- = brand new commit
from master branch into your feature branch. ®

This "moves" feature branch to start
on tip of master branch

O—0O
master

feature

git checkout feature
git rebase master

=

S i

git rebase

Rebase Is another way to reintregrate changes

from master branch into your feature branch. @® = brand new commit

This "moves" feature branch to start
on tip of master branch

O—0 Rebase re-writes the history
master by creating brand new commits.

feature

git checkout feature
git rebase master AR Y

l_:'

S JATalkS

git rebase

+ Rebase keeps the project history clean

master

%

feature

IeRdTalks

git rebase

+ Rebase keeps the project history clean
Resulting project history is linear,

with no forks (merge commit).

master

W@_@_@

feature

the

leRdTalks

git rebase

+ Rebase keeps the project history clean
Resulting project history is linear,

with no forks (merge commit).

master

This makes easier to navigate
history for everyone, even using
tools like git log.

feature

the

leRdTalks

git rebase

— Re-writing project history can be really catastrofic...

master

%

feature

IeRdTalks

git rebase

— Re-writing project history can be really catastrofic...

... when you’re collaborating with
other members on the same branch!

master

W@_@_@

feature

IeRd Talks

git rebase

— Re-writing project history can be really catastrofic...

... when you’re collaborating with
other members on the same branch!

master

Since rebase changes the project
history, once a branch is rebased
you may need to force push it to

feature the remote repo.

WARNING: force push may cause lost of commits of the a5
remote branch because it replaces the full branch history. & [iiTalks

e PIISII HEIEI}TEII.;,EBASE

MERGE. 13'
=

1e project
rebased
)yush it to

‘. -
WARNIN EIT Pl's“ --FoncE

F i = Il
remote biancn vecause it [EPIACES LIEe 1Ull DIANICI THISWIY. C NeHET&IkS

git rebase

— Rebase cannot be undone...

feature

O—(0O——0-—0

master

IeRdTalks

git rebase

— Rebase cannot be undone...

... unless you create a new branch
foature before starting rebase operation.

{ : : : feature-pre-rebase
O—CO O—0O

master

git checkout feature
git branch feature-pre-rebase

& |iTalks

git rebase

— Rebase cannot be undone...

... unless you create a new branch
before starting rebase operation.

(O—0—C feature-pre-rebase After rebase,
O—0O the feature-pre-rebase branch
naster s still referencing the original
branch.

feature

git rebase master

=

S |6hi Talks

git rebase vs. git merge

e the same files content

merge and rebase operations result In:) . .
g P * with completely different history

cd cde
cd cde merge C abcde
. (0 70 J o0—-0—0
O——0—0 o abe
ac abc \
rebase C ac abcd
abc abcde 0 e

IeRd Talks

git rebase vs. git merge

Rebase makes sense on individual branches.

Rebasing branches shared with other developers may cause
lost of commits as well as inconsistent repositories.

If you do so, you’ll probably hear your colleagues in the other room
Invoking your name together with lots of saints.

Rebase allows you to completely rewrite commit history.

Using interactive rebase you can easily squash,
drop, edit, add and reorder commits on your branch.

IeRdTalks

git rebase vs. git merge

Merge is safe.

Use merge if you don’t know Iif someone else is working on the
same branch.

Merge can be undone even if you forget to create a branch before it.

Merge preserves history.

Using merge you can always see the history completely
same as it happened.

IeRd Talks

git rebase vs. git merge (exampies)

1. You are working on your local repo that is a clone of your
remote repo (origin). Your origin is a fork of the upstream repo.

git clone <my remote_repo>

git remote add upstream <upstream_repo>

Now, you want to start to work on a new feature.
Shared feature branch on upstream repo is not required for that feature.

git fetch upstream master
git checkout -b new_feature upstream/master

git rebase vs. git merge (exampies)

After few commits you need to reintegrate changes from upstream master

git fetch upstream master
git rebase upstream master

After a couple of new commits, you push your work to your origin...

git push origin HEAD

...and then you create a new merge request.

git rebase vs. git merge (exampies)

Unfortunately there are merge conflict.
To solve them you can rebase your branch.

git checkout new feature git checkout new feature
git fetch upstream master OR git pull --rebase upstream master
git rebase upstream master

Solve conflicts, then push again...

git push origin HEAD

... .and your push is rejected!

git rebase vs. git merge (exampies)

As you changes the history, you must force push changes to your origin.

git push -f origin HEAD
Now merge request can be merged.

You can also merge from upstream master instead of rebase.

git checkout new feature git checkout new feature
git fetch upstream master OR git pull upstream master
git merge upstream master

git rebase vs. git merge (exampies)

2. Now, consider you need to work on a new feature having a
shared feature branch on upstream repo.

git fetch upstream shared feature
git checkout -b shared feature upstream/shared feature

After a couple of new commits, you push your work to your the
shared branch on the upstream repo...

git push upstream HEAD

git rebase vs. git merge (exampies)

Unfortunately your push is rejected!
Another member pushed changes that conflict with yours.

To solve the conflict you can rebase you local changes from upstream
shared branch and push result to upstream repo.

git checkout shared feature

git fetch upstream shared feature
git rebase upstream shared feature
git push upstream shared feature

WARNING: never force push to shared branches!
If your push Is rejected again, just rebase it and retry.

git rebase vs. git merge

That's all folks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

