
Dependency Injection
NeRdTalker: Marco Ciprietti

Dependency Injection

class IceCreamController {
 public function iceCreamAction($request) {
 $iceCreamService = new IceCreamService();
 $iceCream = $iceCreamService->makeIceCream($request->get('flavors'));

 return new Response($iceCream);
 }
}

class IceCreamService {
 public function getIceCream($flavors) {
 $iceCream = new IceCream();

 foreach ($flavors as $flavor) {
 $iceCreamFlavor = $this->database->findByFlavor($flavor);

 if (!$iceCreamFlavor)
 throw new FlavorNotFound();

 $iceCream->addFlavor($iceCreamFlavor);
 }

 return $iceCream;
 }
}

Ice Cream Service

Ice Cream Service – Unit Test

Unit Test

searchsoftwarequality.techtarget.com/definition/unit-testing

Unit testing is a software
development process in which the
smallest testable parts of an
application, called units, are
individually and independently
scrutinized for proper operation.

Integration Test

Integration testing is the phase in
software testing in which individual
software modules are combined
and tested as a group.
[…]
It occurs after unit testing and
before validation testing.
wikipedia.org/wiki/Integration_testing

Unit Test vs. Integration Test

Unit Testing Integration Testing

 Test the smallest testable part of the
application

 Unit tests should have no
dependencies on code outside the
unit tested.

 Modules are tested independently

 Test the real-life operations of the
application

 Integration testing is dependent on other
outside systems like databases, hardware
etc.

 Modules are combined together

Ice Cream Service – Unit Test
class IceCreamControllerTest extends TestCase {

 public function testNoIceCream() {
 $iceCreamController = new IceCreamController();

 $this->expectException(FlavorNotFound::class);
 $iceCream = $iceCreamController->iceCreamAction(new Request(['lemon']));
 }

 public function testIceCreamExists() {
 IceCreamService::insertFlavor('lemon');

 $iceCreamController = new IceCreamController();
 $iceCream = $iceCreamController->iceCreamAction(new Request(['lemon']));

 $this->assertNotNull($iceCream);
 $this->assertEquals(['lemon'], $iceCream->getFlavors());
 }
}

Problem
1

Unit Test vs. Integration Test

Unit Testing Integration Testing

 Test the smallest testable part of the
application

 Unit tests should have no
dependencies on code outside the
unit tested.

 Modules are tested independently

 Test the real-life operations of the
application

 Integration testing is dependent on other
outside systems like databases, hardware
etc.

 Modules are combined together

Problem 2
Extensibility

Inversion of Control

wikipedia.org/wiki/Inversion_of_control

Inversion of Control (IoC) is a
programming principle which inverts
the flow of control as compared to
traditional control flow.
In IoC, custom-written portions of a
computer program receive the flow of
control from a generic framework.

Inversion of Control

Traditional Inversion of Control

In traditional programming, the custom
code calls into reusable libraries to take
care of generic tasks.

With Inversion of Control, it is the
framework that calls into the custom, or
task-specific, code.

Inversion of Control

Separation of the what-to-do part of the code from the when-to-do part.
 Clients provide the when-to-do (IceCreamController)
 Services provide the what-to-do (IceCreamService)

 Decouple the execution of a task from implementation
 Focus a module on the task it is designed for
 To prevent side effects when replacing a module

 Increase modularity and extensibility
 Free modules from assumptions about how other systems do what they do and instead rely on contracts

Advantages:

Dependency Injection

wikipedia.org/wiki/Dependency_injection

In software engineering, dependency
injection is a technique whereby one
object supplies the dependencies of
another object.
A dependency is an object that can be
used.

Dependency Injection

IceCreamController

IceCreamService

Dependency Injection

Dependency Injection

class IceCreamController {
 /** @var IceCreamService */
 private $iceCreamService;

 public function __construct(IceCreamService $iceCreamService) {
 $this->iceCreamService = $iceCreamService;
 }
}

Constructor Injection

 If the dependency is a requirement and the
class cannot work without it.

 The dependency won't change during the
object's lifecycle.

 Extend the class and override the constructor
can be a mess.

Pros Cons

Dependency Injection

Setter Injection

 Optional dependencies. If you do not need the
dependency, then just do not call the setter.

 You can call the setter multiple times, usefull to
add dependencies to a collection.

 You can call the setter multiple times, so you
cannot be sure the dependency is not
replaced during the lifetime.

 You cannot be sure the setter will be called.

Pros Cons

class IceCreamController {
 /** @var IceCreamService */
 private $iceCreamService;

 public function setIceCreamService(IceCreamService $iceCreamService) {
 $this->iceCreamService = $iceCreamService;
 }
}

Dependency Injection

Property Injection

 Optional dependencies. Dependency is out of control, it can be
changed at any point in the object's lifetime.

 You cannot use type hinting so you cannot be
sure what dependency is injected (Symfony)

Pros Cons

class IceCreamController {

 /** @var IceCreamService */
 public $iceCreamService;
}

class IceCreamController {

 /** @var IceCreamService */
 private $iceCreamService;

 public function __construct(IceCreamService $iceCreamService) {
 $this->iceCreamService = $iceCreamService;
 }

 public function makeAction(Request $request) {
 $iceCream = $this->iceCreamService->makeIceCream($request->get('flavors'));

 return new Response($iceCream);
 }
}

Ice Cream Service
Dependency
injected!

interface IceCreamService {
 /**
 * @param string[] $flavors
 * @return IceCream
 * @throws FlavorNotFound if one of the requested flavors doesn't exist
 */
 function makeIceCream($flavors);
}

Ice Cream Service

Dependency Injection

Service Locator

Dependency Injection
class ServiceLocator {

 private $services = [
 DatabaseIceCreamService::class => new DatabaseIceCreamService(),
 SammontanaIceCreamService::class => new SammontanaIceCreamService(),
 AlgidaIceCreamService::class => new AlgidaIceCreamService(),
 [...]
];

 public function get($serviceId) {
 return $this->services[$serviceId];
 }
}

Dependency Injection
class IceCreamController {

 private $iceCreamService;
 private $mailerService;
 private $deliveryService;

 public function __construct(ContainerInterface $container) {
 $this->iceCreamService = $container->get(IceCreamService::class);
 $this->mailerService = $container->get(MailerService::class);
 $this->deliveryService = $container->get(DeliveryService::class);
 [...]
 }
}

Dependency Injection
Avoiding your Code Becoming Dependent on the Container

symfony.com/doc/current/components/dependency_injection.html

Whilst you can retrieve services from the container directly it
is best to minimize this.
 [...]
You could have injected the container in and retrieved the
ice cream service from it but it would then be tied to this
particular container making it difficult to reuse the class
elsewhere.

Dependency Injection

class IceCreamController {

 private $iceCreamService;
 private $mailerService;
 private $deliveryService;

 public function __construct(IceCreamService $iceCreamService,
 MailerService $mailerService,
 DeliveryService $deliveryService) {
 $this->iceCreamService = $iceCreamService;
 $this->mailerService = $mailerService;
 $this->deliveryService = $deliveryService;
 }
}

Dependency Injection

services:

 # actual service class
 Service\SammontanaIceCreamService: ~

 # ice cream service interface
 Service\IceCreamService: '@Service\SammontanaIceCreamService'

 # controller with injected service
 Controller\IceCreamController:
 arguments: ['@Service\IceCreamService']

services.yml

Dependency Injection

services:
 _defaults:
 autowire: true # enable autowiring for every service
 autoconfigure: true
 public: false

 # actual service class
 Service\SammontanaIceCreamService: ~

 # ice cream service interface
 IceCreamService: '@Service\SammontanaIceCreamService'

 # controller with injected service
 Controller\IceCreamController: ~

services.yml

Ice Cream Service – Unit Test

class IceCreamServiceStub implements IceCreamService {

 public function makeIceCream($flavors) {
 return new IceCream($flavors);
 }
}

class NoIceCreamServiceStub implements IceCreamService {

 public function makeIceCream($flavors) {
 throw new FlavorNotFound();
 }
}

Ice Cream Service – Unit Test

class IceCreamControllerTest extends TestCase {

 public function testNoIceCream() {
 $iceCreamController = new IceCreamController(new NoIceCreamServiceStub());

 $this->expectException(FlavorNotFound::class);
 $iceCream = $iceCreamController->iceCreamAction(new Request(['lemon']));
 }

 public function testIceCreamExists() {
 $iceCreamController = new IceCreamController(new IceCreamServiceStub());

 $iceCream = $iceCreamController->iceCreamAction(new Request(['lemon']));

 $this->assertNotNull($iceCream);
 $this->assertEquals(['lemon'], $iceCream->getFlavors());
 }
}

Unit Test vs. Integration Test

Unit Testing Integration Testing

 Test the smallest testable part of the
application

 Unit tests should have no
dependencies on code outside the
unit tested.

 Modules are tested independently

 Test the real-life operations of the
application

 Integration testing is dependent on other
outside systems like databases, hardware
etc.

 Modules are combined together

Summary

 Use Dependency Injection
 More flexible code

 Easier to unit test

 Easier extendable

 Inject services not the Service Locator
 Clients are not bound to Service Locator

 Easier to use mock and stubs in tests

 It not hides dependencies

 Let the Service Container autowire your services
 Manage services with minimal configuration

 It is predictable

 No runtime overhead

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

