= 2 rr

ey

W / ; . y~ 7 ;/ :;y;f;im
i, [L4 JH G217 7
y 7 7/ {//%///// :
e
& i it
o ///;// iiﬁ'(’""‘h!,‘,‘"
7 /7P

&=

Handling (C++) Deps

.........................

Handling cpp deps

* Statement of the problem: Today every software
depends on something else...

* Each language has defined a way to deal with this
‘problem’ software

« What about C++7?

Ruby gems dependencies

Linux distro package managers
Php composer

Python’s pip

Etc.

* There is no standard! il
* Notable mentions: conan / vcpkg

NetResults

Building the digital society

Type of dependencies

* At the very base level we can divide deps in two main categories
Source dependencies (we can download the dep and compile along our project)
Binary dependencies (maybe the source is not an option)

* Each option has its own advantages and quirks

Binar
VS. Y

Source o

NetResults

Building the digi

Source dependencies

* Pros:

* Allows to test code automatically
when a commit is done to a
dependency (be proactive for
updating deps)

* Avoid ABI clashing, missing symbols,
different interface classes shared
between projects (each component
can be recompiled against the same
version of the dependency)

 Cons:
 Unnecessary recompilations

* Not a straightforward way to
distribute source deps

* Not always available

NetResults

Building the digi

Binary Deps

* Pros:

* Usually production projects always keep the dependency stable (i.e. they use a specific
version) so it is pointless to recompile each time the same thing

* Allow easy distribution of all deps.
* Sometimes they are the only option available (see IPP libraries)

* Cons:
* Can be huge! (extreme case VDK static for iOS is about 800M)

* Sometimes can be difficult to track binary versions (i.e. static libs or dynamic with
no versioning)

* Hard to track and deal with cross-project dependencies (if some common binary
dep changes, most probably you need to change it in all projects)

NetResults

Building the digi

NR solution

* How we dealt with this problem? * And after switching to git?
* Src deps: SVN externals * Svn externals (vdk deps are
(binary not optimized) still on svn)
* Manual download of new qit
repos

* Binary deps:

* Included in repo along
with src

* Downloaded manually

* Is this any better?

NetResults

Building the digi

Looking for a solution

 Conan (becoming the standard ?)
* Pretty complex
* Need a dedicated server
* Dedicated to binaries

* VCPKG (guess the authors?)
* Allows both binaries and src (with recipes for compilation)
* Limited to desktop platforms (?)
* Dedicated to libraries

NetResults

Building the digi

NR proposed solution

* How we should deal with this problem?
* nr_co_deps.py (NetResults CheckOut Dependencies)

* Python script with standard dependency (i.e. modules installed on every modern
platform)

* Runs with both python 2.7 and 3.7
 Has a very simple usage: python nr_co_deps.py dependencies.json
* Git url: https://gitlab.netresults.dev/netresults/utils/scripts

* What kind of dependecies can it handle?
* Svn repos
* Git repos (https / ssh)
* Gitlab Merge Requests (https / ssh)
* Download of ZIP / tgz files via http(s)
 Download of packages from Artifactory
* Avoid downloading again artifacts already downloaded (SHA-256

.........................

Deps.json structure

e Structure: * means mandatory
{
"deps": [
{
"name": an identifier for this dep, *
"rel_dest dir": folder where to download dep (relative to working dir), *
"proto": how to download this dep, (if omitted defaults to git)
"url"*; URL to the dep,
"ignoressl": whether or not ignore ssl error (defaults to no),
"username": username used for auth,
"password": password used for auth,

"branch_or_tag" : the branch / tag / merge request of the deps (NOTE: if omitted master or trunk
will be used dependlng of protocol. MR should always be in the form mr-git_ remote-number_of mr)

"unzip" : whether the package should be unzipped (makes sense for http / artifacts)
"depsfile": the name of another deps.json file to be used recursively

},

NetResults

Biutitbditnig- =t hietid ing ifta L iiscoe

Protocol: artifact

 What is artifactory?

Artifact Repository
Optimized for deduplication
Dozens of REST APIs to handle / search packages

Allows storage of different types of packages: pip, deb / rpm, gems, conan,

maven, etc.

We have now an cloud service: https://nrreleases.jfrog.io (we might switch to on-

prem if need be)
What can we do?
* Allow storage of nightly / releases and MR builds
* Integrates with teamcity for automatic deploy
* Retrieve specific version of above categories
* Retrieve ‘latest’ build for each of the above categories

NetResults

Building the digi

https://nrreleases.jfrog.io/

Deps.json structure for artifactory

* Structure: * means mandatory
{
"deps": [
{
"name" * : "unigloggerbin_artifact",
"rel dest dir" *: "src/ext/uniglogger-bin",
"proto": "artifact”,
"username": "admin",
"password": "password",
“url" * : "https://nrreleases.jfrog.io/nrreleases/cpp-artifacts”,
"module": "bblocks/uniqglogger”,
"branch_or tag": "nightly",
"version": "0.7.1",
"unzip": "true”

NetResults

Biuitlbdinig-=t hietid iig ift a | isto'c

It
KEEP
CALM

AND

CAVEAT
EMPTOR

NetResults

Bui

ttttttttttttttttttttttt

What’s missing (yet)

* No artifact repository for merge requests

* No queries to download ‘latest’ version

* No teamcity rule to build ‘release’ or ‘MR’

* No instructions to manual upload packages

* Surely something else i'm forgetting at the moment

NetResults

Building the digi

The end (For real!)

.........................

	Francesco Lamonica
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

