
Francesco Lamonica

E BC SP

Handling (C++) Deps

Handling cpp deps

• Statement of the problem: Today every software
depends on something else…

• Each language has defined a way to deal with this
‘problem’

• Ruby gems
• Linux distro package managers
• Php composer
• Python’s pip
• Etc.

• What about C++?
• There is no standard! 
• Notable mentions: conan / vcpkg

Type of dependencies

• At the very base level we can divide deps in two main categories
• Source dependencies (we can download the dep and compile along our project)
• Binary dependencies (maybe the source is not an option)

• Each option has its own advantages and quirks

Source dependencies

• Pros:
• Allows to test code automatically

when a commit is done to a
dependency (be proactive for
updating deps)

• Avoid ABI clashing, missing symbols,
different interface classes shared
between projects (each component
can be recompiled against the same
version of the dependency)

• Cons:

• Unnecessary recompilations
• Not a straightforward way to

distribute source deps
• Not always available

Binary Deps

• Pros:
• Usually production projects always keep the dependency stable (i.e. they use a specific

version) so it is pointless to recompile each time the same thing
• Allow easy distribution of all deps.
• Sometimes they are the only option available (see IPP libraries)

• Cons:
• Can be huge! (extreme case VDK static for iOS is about 800M)
• Sometimes can be difficult to track binary versions (i.e. static libs or dynamic with

no versioning)
• Hard to track and deal with cross-project dependencies (if some common binary

dep changes, most probably you need to change it in all projects)

NR solution

• How we dealt with this problem?
• Src deps: SVN externals

(binary not optimized)

• Binary deps:
• Included in repo along

with src
• Downloaded manually

• And after switching to git?
• Svn externals (vdk deps are

still on svn)
• Manual download of new git

repos
• Is this any better?

Looking for a solution

• Conan (becoming the standard ?)
• Pretty complex
• Need a dedicated server
• Dedicated to binaries

• VCPKG (guess the authors?)
• Allows both binaries and src (with recipes for compilation)
• Limited to desktop platforms (?)
• Dedicated to libraries

NR proposed solution

• How we should deal with this problem?
• nr_co_deps.py (NetResults CheckOut Dependencies)
• Python script with standard dependency (i.e. modules installed on every modern

platform)
• Runs with both python 2.7 and 3.7
• Has a very simple usage: python nr_co_deps.py dependencies.json
• Git url: https://gitlab.netresults.dev/netresults/utils/scripts

• What kind of dependecies can it handle?
• Svn repos
• Git repos (https / ssh)
• Gitlab Merge Requests (https / ssh)
• Download of ZIP / tgz files via http(s)
• Download of packages from Artifactory
• Avoid downloading again artifacts already downloaded (SHA-256)

Deps.json structure

• Structure: * means mandatory
{
 "deps": [
 {
 "name": an identifier for this dep, *
 "rel_dest_dir": folder where to download dep (relative to working dir), *
 "proto": how to download this dep, (if omitted defaults to git)
 "url"*: URL to the dep,
 "ignoressl": whether or not ignore ssl error (defaults to no),
 "username": username used for auth,
 "password": password used for auth,
 "branch_or_tag" : the branch / tag / merge request of the deps (NOTE: if omitted master or trunk
will be used depending of protocol. MR should always be in the form mr-git_remote-number_of_mr)
 "unzip" : whether the package should be unzipped (makes sense for http / artifacts)
 "depsfile": the name of another deps.json file to be used recursively
 },
…
]
}

Protocol: artifact

• What is artifactory?
• Artifact Repository
• Optimized for deduplication
• Dozens of REST APIs to handle / search packages
• Allows storage of different types of packages: pip, deb / rpm, gems, conan,

maven, etc.
• We have now an cloud service: https://nrreleases.jfrog.io (we might switch to on-

prem if need be)
• What can we do?

• Allow storage of nightly / releases and MR builds
• Integrates with teamcity for automatic deploy
• Retrieve specific version of above categories
• Retrieve ‘latest’ build for each of the above categories

https://nrreleases.jfrog.io/

Deps.json structure for artifactory

• Structure: * means mandatory
{
 "deps": [
 {
 "name" * : "uniqloggerbin_artifact",
 "rel_dest_dir" * : "src/ext/uniqlogger-bin",
 "proto": "artifact",
 "username": "admin",
 "password": "password",
 "url" * : "https://nrreleases.jfrog.io/nrreleases/cpp-artifacts",
 "module": "bblocks/uniqlogger",
 "branch_or_tag": "nightly",
 "version": "0.7.1",
 "unzip": "true“
 },
…
]
}

EMBRACE BC SP

 The end (?)

What’s missing (yet)

• No artifact repository for merge requests

• No queries to download ‘latest’ version

• No teamcity rule to build ‘release’ or ‘MR’

• No instructions to manual upload packages

• Surely something else i’m forgetting at the moment

EMBRACE BC SP

 The end (For real!)

	Francesco Lamonica
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

