
NeRd Talks Vol12 - QtPlugins
Relatore: Stefano Aru

What is a plugin

In computing, a plug-in (or plugin, add-in, addin,
add-on, or addon) is a software component that
adds a specific feature to an existing computer
program. When a program supports plug-ins, it
enables customization.
[Wikipedia]

What is a QtPlugin

QtPlugins are implemented as shared library
loaded at runtime.

Qt offer a set of functionalities to load and use
plugins at run time.

Why plugins?

Plugins allow us to upgrade and customize an
application one step at the time.

How do I make a QtPlugin?

- Plugin interface definition

- Plugin project creation

- Plugin implementation

QtPlugin interface definition

QtPlugin interface definition

Q_DECLARE_INTERFACE:
 This macro allows Qt to register the new
 interface to be referred later

virtual void hello() = 0;
 Our virtual method to implement

Plugin project creation

QtPlugin definition

QtPlugin definition

Q_PLUGIN_METADATA:
 This macro allows us to assign the id to our
 Plugin, we can also specify additional metadata
 passing a json file

Q_INTERFACES:
 This macro tells Qt which interfaces the class
 Implements, the interface must be previously
 registered with Q_DECLARE_INTERFACE

QtPlugin definition

void hello() override;
 The interface method we want to implement

class PluginA : public QObject, PluginInterface
 Our plugin must inherits from QObject

QtPlugin implementation

QtPlugin implementation

void PluginA::hello()
 The virtual method implementation

Loading a QtPlugin

Loading a QtPlugin

QPluginLoader
 Is the class responsible to load plugins at
 runtime

loader.instance()
 Returns the instance to our plugin
 The instance will be always the same unless the
 loader is unloaded and then loaded again

iQAC Agent and QtPlugins

Starting scenario:

In the Agent software the test creation and
configuration was demanded to a single class

iQAC Agent and QtPlugins

Agent
VoipTestProbe

TestA

TestB

TestC

TestD

TestZ

iQAC Agent and QtPlugins

Problems:

- Adding a new test meant to add even more code
 to this class

- This class has grown up to over 9000 lines of
 code with a huge switch

iQAC Agent and QtPlugins

We aimed to translate this logic into plugins

- Improved the maintainability

- The delivery process for a new test can be much
 more simple

iQAC Agent and QtPlugins

Agent

qacPluginManager

qacTestResolver

PluginTestA

TestA

PluginTestB

TestB

PluginTestC

TestC

iQAC Agent and QtPlugins

- Metadata are used to track capabilites of each
 Test plugin

- Two simple components replaces the structure of
 the previously massive class, spreading the logic
 over all the plugins

Plugins pros

- Granularity

- Partial upgrades

Plugins cons

- Data contracts

- They must be plugged

Question time

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

